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ABSTRACT

A method of numerical integration of the equations of motion
of unguided alr-to-surface weapons is developed. This algorithm,
suitable for real-time solution by airborne digital computers,
yields accurate trajectory parameters, provides great flexibility
in release condition and weapon type, and minimizes computer
memory requirements.
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FOREWORD

The investigations leading to this report were motivated by
a need for a flexible, general-purpose algorithm, suitable for
near real-time solution by current airborne digital fire-control
computers, that would provide accurate weapon trajectory param-,
eters for unguided alr-to-surface weapons delivery.

The initial investigations were performed by the Boeing

"Company, Seattle, Wash., under Naval Weapons Center Contracts

N00123-69~C~1344 and N00123-70-C-0829, authorized and funded by
AirTask A365-33348/216-1/S-171-00-00, from March 1969 to September
1970. The final work was accomplished by NWC Code 4074 under
AirTask A510-5103-216-2/1235-000-143.

This report has been reviewed for technical accuracy by
Paul B. Homer, Weapons Development Department, and Edward Y.
Mikami, Research Department. It is released at the working level:.
for information only.

Released by Under authority of
M. M. ROGERS, Head F. H. KNEMEYER, Head
Weapons Systems Analysis Div. Weapons Development Dept.

15 August 1972
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INTRODUCTION

Since the first airborne digital computers were introduced into
operational Navy attack aircraft some 15 years ago, a basic computational
requirement imposed upon these computers has been the prediction of weapon
range and time-of-fall, given sensor-supplied release conditions. Because
of the nature of the problem, each aircraft system developed in this
interim period (e.g., A-6A, ILAAS, A-7E, etc.) has had concurrently
«-developed with it a '"new" set of weapon ballistic equations for this

_air—to-ground fire control use. While all the '"sets" of weapon ballistic

equations are developed from the same basic physical considerations, their
final formulation is subject only to the ingenuity of the mathematician,
‘and often the equation sets bear no resemblance to each other. Each of

"these sets of equations has to be 'proofed" through extensive developmental

flight tests, and each has its own idiosyncrasies.

As the .processing speed and capacity of these airborne digital com~
puters has increased, a direct method of solution of the ballistic weapon

_ trajectories has become more and more attractive. This method, numerical

integration, has heretofore required excessive time at the processing
speeds available to meet the near real-time requirements of airborne
weapon delivery systems.

This report presents a method of numerical integration of ballistic
weapon trajectories that is suitable for ¢urrent operational airborne

wirdigital computers in that it is fast, accurate, flexible, and efficient.

It is hoped that this algorithm, or modifications thereof, will become
the standard method of trajectory computation for future airborne digital
weapon delivery systems.

BACKGROUND

BALLISTIC PROJECTILES

Most aircraft unguided air-to-ground weapons can be described as
ballistic projectiles. That is, the only forces acting on them after
release from the aircraft are gravity and aerodynamic drag. Bullets,
streamlined bombs, drogued (retarded) bombs, cluster munitions, and
unguided rockets (after burnout) are all ballistic projectiles. Guided
weapons and weapons developing lift are not ballistic projectiles.
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To successfully release a ballistic weapon from an aircraft so that
it impacts at a desired point requires a measurement of--or predictions
concerning--the following quantities:

Position of the target relative to the aircraft

. Velocity of the aircraft in the air mass

Direction and magnitude of gravity .
Velocity of the aircraft relative to the ground) (or total rela-
Velocity of the target relative to the ground } tive velocity)
An a priori prediction of the weapon trajectory

(for example, horizontal range, time of flight)

AUV ESWN

given known initial (release) conditions in the air mass. This includes
assumptions concerning the structure of the air mass containing the
trajectory and of the ballistic (drag) characteristics of the weapon.
The first five of these quantities are normally supplied in current
operational airborne weapon delivery systems by a variety of aircraft
sensors, e.g., inertial platforms, air data sensors, radar or laser
rangers, target—tracking devices, etc. While the accuracy with which

a ballistic weapon can be delivered against a target depends greatly
upon the accuracy of this sensor-supplied information, equally important
to the problem is the a priori prediction of the weapon's trajectory
based upon the sensor-supplied instantaneous weapon release

parameters.

BALLISTIC PROJECTILE TRAJECTORY SOLUTION

The solution of a ballistic trajectory in the air mass has frustrated

mathematicians for several centuries. The equations of motion governing
the trajectory of a ballistic projectile are a simple-appearing set of

second-order differential equations (see p. 8). However, when a reasonably

accurate model of the aerodynamic drag caused by the projectile's motion
through the air mass is included in these equations, they are rendered
extremely nonlinear, and no general solution in closed form has been
found that is satisfactory for solution by an airborne fire-control
computer.

In the past, several techniques have been used to evolve ballistic
trajectory equations (solutions) that were adequate for airborne fire-
control use. Most of these techniques involved replacing the accurate
model of projectile drag with simplifying approximate expressions that
render the equations integrable in closed form. These approximate equa-
tions, of course, yield solutions that are incorrect under release
conditions (or projectile drag regimes) for which the original approxi-
mation was not nearly true. To correct these first solutions, empirical
functions are determined that modify the approximate solutions to yield

-
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sufficiently accurate results. As the weapon release envelopes have
expanded and the number of types of ballistic weapons has increased,
these empirical functions.have become more and more complex. The
introduction of the dispenser weapons, with their discontinuous drag.
change and resultant 'broken~back" trajectory, has further compounded
the problem.

Normally, these approximate solutions and their modifying empirical
functions are developed to satisfy the stated release envelopes and
solution accuracy of a predefined set of ballistic weapons. If a new
weapon is introduced, a modification to an existing weapon occurs, or a
change in release envelope is required, it is not unlikely that the
original empirical function will have to be redetermined to satisfy the
new requirement.

All these factors have led to considerable complexity in the
ballistic trajectory equations resident in most current aircraft weapon
delivery systems that use a digital computer for real-time data pro-
cessing. This complexity, of course, leads to large resident program
memory requirements, while the basic formulation often restricts the
weapon release envelope over which accurate solutions are possible.
Additionally, the equation formulation often does not provide sufficient
flexibility to allow easy incorporation of desired changes in weapon
type or release envelope limits.

Since' the introduction of the large ground-based digital data
processors, all bombing and ballistic tables have been calculated by a
process known as ''numerical integration." 1In this process, the total
path is divided into many pieces, and within each piece the approxima-
tion is made that all forces remain constant for short time periods.

A mathematical formula with constant forces permits easy calculation

of the position and velocity of the projectile at the end of the short
time period, e.g., 0.1 second. The forces on the projectile are then
calculated for the new point and used for the next 0.1 second, and the
process is continued in a repetitive manner. A typical calculation may
divide the fall (trajectory) of a weapon into 1,000 ' segments. While
yielding very accurate solutions, the time required to complete the
computations may range up to a few seconds even on a high-speed, ground-
based digital data processor. This numerical integration process is
relatively straightforward, and requires only that the following be
known: an accurate mathematical representation of the atmosphere con-
taining the trajectory, the drag characteristics of the weapon, and the
release (initial) conditions.

The intrinsic simplicity, accuracy, and flexibility of this method
of computing ballistic trajectories made it an extremely attractive
candidate for use in airborne digital computers for trajectory computa-
tion. However, a major obstacle to overcome was the near: real-time
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solution requirement for airborne applications; i.e., given that present
release conditions were measured at time zero, a trajectory solution

must be available within the computer based on those measurements on the
order of 0.05 to 0.1 second later, if delivery accuracy is to be retained
under dynamic flight conditions. Even though the processing speeds of
airborne digital computers have been ever-increasing, the numerical
integration methods commonly used by ground-based digital processors
require far more time to provide a solution than this maximum acceptable
time.

The ballistic integrator algorithm discussed in detail in the re-
mainder of this report is designed to minimize these computation time
requirements, while still retaining excellent accuracy and great
flexibility. It also has been designed to minimize computer program
storage requirements. .

BASIC CALCULATION METHOD

The algorithm uses a time-base, second-order, Runge~Kutta numerical
integration process with a fixed number of time (integration) steps for
all weapons. To keep calculation time small and fixed (a requirement
for airborne use) the number of integration steps must be small and fixed.
Good accuracy is maintained for all weapons using 10 integration steps.

To provide greater accuracy, or to expand the release envelope, more
steps could be used at the expense of increased computation time.

In the initial work on this algorithm, the equations or data used
in the description of the atmosphere (i.e., density, speed of sound,
etc.), gravity acceleration, and drag coefficient were those used as
standard in the computation of official ballistic tables. Subsequent
work has developed new equations that yield the same results, but which
minimize both storage and computation time. At no point in the basic
equations (the models of the physical world) has any approximation been
used that is significantly different from those accepted and used in
the computation of ballistic tables.

Figure 1 illustrates how the numerical integration process of the
algorithm works. Figure 1A shows a defined release point (speed,
altitude, and dive angle). Everything necessary is known about the
release point. The impact range and time-of-flight are to be calculated.

On first-pass (first calculation of weapon trajectory) the size of
calculation intervals must be estimated. One way of obtaining this
estimate 1s to use the vacuum trajectory in finding the time-of-flight
and dividing it by the number of integration steps to be used. This
works well for low-drag bombs; however, this estimate may be off as much
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as a factor of two or three in the high-drag bomb case. Even after
making a vacuum guess, in order for the integration technique to be
stable the calculation intervals must not be larger than the maximum
allowable. It turns out that it is best to use maximum step size
allowable to start the first-pass. Estimating the time-of-flight after
first-pass will not be a problem. Since the time-of-flight will be

calculated repetitively, one will always have a good estimate once the
process is started.

RELEASE
~\\\Q
5
<
IMPACT
TIME TIME ‘\ls
{A) THE PROBLEM (8} FIRST-PASS FORWARD
INTEGRATION WITH MAX STEP SIZE
1
~
4
ROOTING
INTERVALS Wl
T 2
e
™
TIME 3 \
10 ROOTING
. TIME j INTERVAL
{C) FIRST—PASS INTEGRATION (D) INTEGRATION AFTER FIRST-PASS

ROOTING TO IMPACT POINT

FIG. 1. Numerical Integration.
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Starting at release point, the position, velocity, etc., of the
projectile is calculated as it reaches the time corresponding to the end -
of the first step. (See Fig. 1B, point '"1".) No trajectory calculations
are made at any point between the ends of the steps. To calculate "1",
begin with the release point and calculate the average value of the
forces acting on the projectile between release and "1". The simplest .
estimate would be that the forces are the same throughout the interval
as at release. This estimate is good only if the interval is very short
or if the forces change slowly. A better estimate 1s needed to use long, o
but few, steps. The one used in the algorithm is the second-order,
Runge-Kutta technique of numerical integration. This technique and why
its choice are discussed in Appendix A (Ref. 1 and 2).

The average values of the forces in the interval, expressed as
functions of time, are multiplied by the length of the step to find a
close approximation of "l1". The same practice is repeated to go from
"1" to "2" and so on until "5" is reached.

At "5" the algorithm notes that the calculated position is under-
ground (below target altitude). It is not known where between "4" and "5"
the projectile struck the ground. Since we are using 10 integration steps
total, the remaining 5 steps are used for rooting the projectile to impact
point (see Fig. 1C). The size of integration interval for "6" is obtained
by dividing the altitude at "5" by the product of the vertical velocity
component of the projectile at "5" and the remaining five integration
steps. The process is repeated for "7" and so on until we reach "10".
Finally, a small straight-line correction is made, if needed, for time-
of-flight and impact range so the projectile will be at target altitude.

Figure 1D shows the numerical integration process after first-pass
of the same release condition.

The basic integration method applies to any ballistic projectile,
but some adaption is required for each type of weapon. The adaptions
included in the algorithm are described briefly below.

CLASSES OF WEAPONS

Streamlined Bombs and Bullets

The process described fits streamlined bombs exactly. After being
fired, a bullet is really just a small, streamlined bomb and is handled
as such. The muzzle velocity of a particular gun-bullet combination is
added to the aircraft velocity. -
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Drogued Bombs

These bombs are more difficult to model accurately. Their common
characteristic is that they are released in a relatively low-drag con-
figuration. At some time after release they deploy vanes or a parachute

- which greatly increases total drag. There is no basic difficulty in
A calculating bomb trajectory before the drogue is deployed. Nor is there
‘ a basic difficulty in calculating the trajectory after the drogue is
s deployed. The problem is to break the calculation correctly into two
parts, one using each drag function. :

Cluster Bombs

These weapons are released as failrly large, low-drag containers.
At a predetermined point in their fall, they use some mechanism to
dispense smaller weapons. These smaller weapons are higher drag than
the container and may also develop 1ift. The fire-control computer
should predict the impact location of the center of the pattern rather
than individual positions of the small bombs. The method of applying
the algorithm is to calculate the trajectory of the container to the
point where it dispenses the small weapons; switch to a drag function
which describes the motion of the pattern center; and integrate down
to the target altitude. Once again, the important factor is providing
the logic to switch the drag function at the right place.

Unguided Rockets

Rockets present several problems. They change weight during flight;
they have thrust (at varying levels) as well as drag; and they slew around
just after firing, because their launches are not lined up with the
aircraft direction of flight. The algorithm treats unguided rockets
like a cluster bomb with the first stage having an average thrust as
well as an average thrust time. This provides sufficient accuracy and
saves computer storage that would be taken up storing the thrust profile
of each rocket.

NWC-BOEING TRAJECTORY ALGORITHM

Basic Differential Equations

The development of an effective weapons release system is inherently
dependent upon obtaining solutions of the equations for the motion of a
. projectile within the atmosphere. This is, generally, a difficult math-
ematical problem which has not been solved completely. The major dif-~
ficulty stems from the nonlinearities introduced by the atmospheric
- effects on a falling weapon.
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In choosing the mathematical model, two considerations have been
kept in mind. The major objective of the mathematical analysis is to -
yield the weapon impact point. The main effect of this is that the
weapon mass can be assumed to be a point mass. Also, the choice of the
model is dictated by the need to evaluate results against some standard.
Since the armed forces published range tables for various weapons, the
model is chosen to conform as closely as possible to the model used for
these tables.

The equations of motion are developed assuming the projectile is a
point mass acted on only by the force of gravity and the retardation
forces due to air resistance. The trajectory can be restricted to a
plane by ignoring crosstrack effects such as winds. For practical
applications, the effect of winds can be accounted for in a straight-
forward manner.

The assumptions adopted are summarized below:

The Earth is flat and nonrotating.

The gravitational attraction is constant.

The projectile is a point mass. '

The projectile is not powered and has a constant mass. (Rocket
applications are discussed in the next section.)

L VVRN N

Under these assumptions, the differential equations of motion (Ref. 3)
have the following form.

2
9——’2(+H%§=0 ; (1)
dat .
42

——-—d‘;+Hg—z+G 0

dt

where X, Y, t, and G denote downrange, altitude, time, and gravitational
attraction, respectively. The coefficient H, which is the drag function, .
is given by

=R 427 .. ’
H=gd gCV (2)
where p is the atmospheric mass density, W is the bomb mass, d is the "
bomb diameter, Cp is the weapon coefficient of drag, and V is the velocity -

in air mass. The atmospheric density p is given as a function of altitude
which is fitted to measured values of atmospheric density. Cp is
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empirically derived and given in tabular form as a function of Mach
number. A constant gravitational acceleration of 32.174 ft/sec? is
quite adequate for most bombing applications and helps simplify the
differential equations.

The above differential equations are not analytically integrable,
if an accurate model of H is used, because an accurate model would
render them extremely nonlinear.

The two second-order, differential equations given in Eq. 1 will
now be rewritten as four first-order, differential equations. This is
done to get the differential equations in a form that is more suitable.
to the integration process used. Two new variables Vy and Vy are
defined by

dX
dt Vx

(3)

dy _
dt Vy

Substituting the above expressions in Eq. 1 results in

—L =gy -g¢ ' : (4)

The four first-order, differential Eq. 3 and 4, are the desired equations
with time as the independent variable. The Runge-Kutta integration
formulas provide a step-by-step method of finding dependent variable
values at given intervals of the independent variable. This is discussed
in detail in Appendix A, Figure 2 shows the salient features in the

x-y plane.
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\ RELEASE POINT

TARGET HEIGHT

MEAN SEA LEVEL

FIG. 2. Trajectory in the x-y Plane.
|

LOGIC AND DESCRIPTIVE FLOW DIAGRAMS l

The computer logic developed for implementing the weaﬁon delivery
algorithm into an airborne digital computer is outlined ianig. 3. This
includes the logic for the: !

1. Starting procedure ‘

2. Repetitive computations :

3 Specification of the integration interval in each,of the above
cases ' |

4. Monitoring of the state of the trajectory computa&ions, i.e.,
whether the computation of a given trajectory or part of a
trajectory is completed. : i

Figure 4 is a descriptive flow diagram of Fig. 3. This will aid the
reader in understanding the details of the algorithm. ‘

The scheme used to classify weapons into different types will become
apparent in the section starting on p. 13. The ITYPE number for each
weapon 1s carried along with the weapon-dependent constants. This number
controls the course of the logic shown in Fig. 3. The valﬁes for MSTG
and IREG help specify the form and region of the Cp represéntation to be
used in the integration process.

To recapitulate, the logic shown in Fig. 3 specifies the integration
interval size, D, and the form of Cp for each integration step and per-
forms the integration in computing the weapon trajectory. | A more detailed
explanation of the logic flow diagram in Fig. 3 is included in the section
referred to in the preceding paragraph.

|
10 (
|
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Definition of higm Terms .

Terms)relating to this program are defined as follows:

AN1, AN2
APl, AP2
Al, B1l, Cl1
A2, B2

cc

CF

CFORM1
CFORM2
CKDG

DKG
DKG1
DKG2
DM
DMAX
DM1
DM2
DS

FRACT

HH

Runge-Kutta parameter (0.7 for 10 integration steps)
0.57A

A XD

Runge-Kutta variables

Runge-Kutta variables

RHO coefficients

CM coefficients

- Matrix (3x3x2) of drag curve coefficients

CKDG stretch

CKDG stretch factor for first stage
CKDG stretch factor for second stage
Bomb coefficient times drag coefficient
Mach number

Integration step size

Shift in CKDG

Shift in CKDG for first stage

Shift in CKDG for second stage

Shift in Mach number

Largest integration step size allowable
Shift in Mach number for first stage
Shift in Mach number for second stage

Integration step size for first stage of ITYPE # -1

weapons except for retarded Snakeye. DS is a coefficient
in the fin deployment time calculation for retarded Snakeye
weapons. .

Equal to TH for first stage .
Parameter between zero and one (0.5 for 10 integration steps)
Acceleration due to gravity ' ‘
Total drag function

Index counter for Runge-Kutta integration

11
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ICALC Initial trajectory calculation indicator

TREG Mach region index

ITYPE Weapon classification parameter

KFLAG Flag for weapon delivery envelope. KFLAG equals zero for

inside the envelope and plus outside. On first-pass KFLAG
is meaningless.

MSTG Weapon stage index
MSTG = 1 for first stage
MSTG = 2 for second stage

NL Maximum number of integration steps

NLM1 NL - 1

NSTEP Number of integration steps for first stage of ITYPE # -1
weapons. NSTEP = NLM1 for ITYPE = -1 weapons.

NT Number of deceleration steps for ITYPE # -1 weapons

NUM Integration step counter

RHO Air density (slugs/ft3) i

SL Slope coefficient for retarded Snakeye fin deployment
time; SL = 0 for other weapons

T Elapsed time from weapon release |

TH See Eq. 13

TL Small correction in T after final integration step

TS Time-of-flight of the previous trajectory calculation
Aircraft speed (ft/sec)

v Total velocity of weapon (ft/sec)

VX Velocity component of V in X direction

VXA VX at weapon release

VX0 VX at start of present integration step

vY Velocity component of V in Y direction

VYA VY at weapon release

VYO VY at start of present integration step

X Weapon groundrange from release (ft)

XNSTEP NSTEP + FRACT

XNLM1 NLM1 + FRACT

Y Weapon altitude above sea level (ft)

YA Highest altitude in the weapon trajectory (ft)

YO Y at start of present integration step

YT Target altitude above sea level (ft)

12 l
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EXPLANATION OF LOGIC FLOW DIAGRAM

The logic flow diagram in Fig. 3 is best explained by an example of
each of the four types of weapons and with the aid of Fig. 4. Given a
weapon, its type, ITYPE, is determined as follows:

ITYPE Type of weapon

-1 Single-stage weapons with no deceleration compu-
" tation (e.g., Mk 81 low-drag, Mk 117)

0 Retarded parachute weapons (e.g., retarded Mk 43)

1. Dual-stage weapons which require two drag curves
(e.g., Rockeye II, Sadeye, Retarded Snakeye)

2 Single-stage weapons with the deceleration
computation (e.g., Mk 106) and dual-stage
weapons which require only one drag curve
(e.g., rockets)

Computations for an ITYPE -1 Weapon

The logic flow starts in the top left corner of Fig. 3 from DECODE
(see Appendix C). If the computations are being done for the first time
(first-pass), the weapon-dependent constants and certain other variables
are set up. Otherwise, this task is bypassed in DECODE.

. The position and velocity variables are initialized to correspond
to the beginning of a trajectory and several other variables are reset
in block RK1l. The type of weapon, ITYPE, is tested in block RK2. This
sends the logic to block RK3, where the integration step size, D, is
calculated. Note that TS is not known if the calculations are being
done for the very first time; however, in this case, D is calculated
later in block RK7.

The value of ICALC is tested next. If first-pass, ICALC will equal
zero and the logic will be routed to block RK7, where D is set equal to
the maximum allowable step size, DMAX. If not first-pass, ICALC will be
Plus and the logic will go to block RK6, where a test is made to make
-sure that D is not larger than DMAX. If D is greater than DMAX, the
logic will be routed to block RK7.

We are now ready to perform the first step of Rurge-Kutta integra-
tion of the trajectory in blocks RK8-RK18. These blocks are explained
in the descriptive flow diagram of Fig. 4. .

13
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The integration step counter, NUM, is updated at the end of
block RK18. Since NUM equals one after the first integration step, the
test at block RK19 sends the logic to RK20. Assuming a normal dive
release condition above the target, the logic will be routed to block
RK21, then RK23, and finally back to RK5 for the beginning of the next
integration step. .
During first-pass in a normal dive trajectory, this process will «
continue until the trajectory is below the target altitude. At this
point the target altitude test in block RK21l fails and the logic is
routed through blocks RK30-RK32 for routing back to impact point.
After the last integration step, blocks RK35-RK40 make a small straight-
line correction in time-of-flight and impact range.

The second and all succeeding trajectory calculations will be
similar, except ICALC will be plus. The calculations for a given
trajectory end with a return at block RK34 or RK4l. Also, KFLAG will
be set to zero or plus depending on whether the trajectory is inside
or outside the envelope, respectively.

Computations for an ITYPE 1 Weapon

_ The discussion in this section will not repeat the details discussed
in the last section when describing the calculations for an ITYPE 1 weapon
(e.g., Rockeye II). The process for this case is similar to that of the
ITYPE -1 weapon until block RK2 of Fig. 3 at which time the logic is
then routed to block RK4 where D is calculated. The value of D is equal
to the time necessary for the dispenser (the fin for retarded Snakeye)

to open divided by the number of steps, NSTEP, that are used for the
first stage.

After NSTEP integration steps, the test in block RK23 routes the
logic through the necessary blocks RK24-RK29 in order to select the
parameters for the second-stage drag curve and reset the integration
step size for the remaining steps of the trajectory calculation.

For some ITYPE 1l weapons (e.g., Sadeye, retarded Snakeye) the de-
celeration after dispenser or fin opening at the beginning of the second
stage i1s so great that special step sizes are needed to slow the weapon
down the first NT steps in the trajectory calculations. Blocks RK27 and
RK29 serve this purposé. Block RK28 resets the integration step size
after the NT deceleration steps, if any, to the time remaining, TS-T,
divided by approximately the number of remaining integration steps.
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Computations for an ITYPE 2 Weapon

ITYPE 2 weapons are similar to ITYPE 1 weapons except only one drag
curve is needed for both stages. For example, rockets only need a change
in bomb coefficient using the same drag curve for the second stage when
thrust is zero. Similarly, very high-drag bombs like the Mk 106 need to
be decelerated the first few steps of the weapon trajectory but need' only
one drag curve. This qualifies the Mk 106 for an ITYPE 2 weapon.

Computations for an ITYPE 0 Weapon

The ITYPE O weapon 1s a special case ITYPE 1 weapon. For example,
the retarded Mk 43 parachute bomb has two drag curves like the ITYPE 1
weapon and requires a large number of deceleration steps to handle the
opening of the parachute and its effect on slowing the weapon down to a
near-constant velocity. After that, the horizontal velocity component
of the bomb is very small and the vertical velocity component remains °
almost constant due to the parachute.

The differentiating factor of the ITYPE O weapon from the ITYPE 1
weapon is the way the straight-line correction for time-of-flight and
impact range is handled in blocks RK35-RK40. No correction in impact
range is made after the final integration step. However, time-of-flight
is corrected like all other weapons. Good accuracy is obtained over:
almost an unlimited envelope by this technique for retarded Mk 43, Mk 57,
and Mk 61 parachute bombs.

Sizing and Timing of Algorithm

A study was made to determine the number of computer words and
computational time required for the algorithm using as a reference the
IBM 4-Pi Model TC-2 airborne computer. To obtain a count for the number
of computer words and the type of instructions needed, a machine language
program was written. Without scaling, a core size of 551 words was
estimated to accommodate the present program and the choice of 28 weapons -
currently implemented in the A-7E aircraft. The breakdown of the word
estimate is: '

Constants for 28 weapons ...... seattsseaas cesans «es 174 words

Instructions to locate requested weapon and
load appropriate constants .......cc0venn seeasencas 129 words

Runge-Kutta integration part of the algorithm
including the calculation of air density, Mach
number, and the square root of Vy2 +Vy2 oLl eees 122 words

Control logic of the algorithm .......... esssseases 126 words
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The IBM 4-Pi Model TC-2 computer technical reference description
gives execution time (in microseconds) of the following instructions:

Instruction Time, Usec .
Load 5.0 . .
Store ' 5.0 .
Add 5.0 -
Subtract 5.0
Multiply 20.0
Divide 21.0
Branch 2.5
Complement 2.5
Shift 5.0 plus number of

positions shifted

These instructions and corresponding times were used in the above-~
mentioned machine language program.

For 10 steps to compute a weapon trajectory, the maximum time is
16.5 milliseconds and the minimum is 16.3 milliseconds without scaling.
It should be pointed out that a smaller number of integration steps could
be used to decrease the computation time at the expense of a smaller
weapon envelope.

MODES .O_F WEAPON DELIVERY

The algorithm logic is very general and can be used for dive, toss,
loft, and over-the-shoulder weapon delivery. The logic handles the
cases where target altitude, YT, is above or below the present aircraft
altitude at weapon release. The algorithm is stable at any altitude,
velocity, dive angle, and pullup maneuver the present A-7E aircraft is
capable of for the 28 weapons listed in Appendix B.

As mentioned earlier, KFLAG will be zero if the weapon trajectory
is inside the envelope and plus if outside the envelope. The envelope
for a particular weapon can be enlarged with an increase in total number
of integration steps in the algorithm at the expense of more computation
time. Likewise, computation time can be cut down at the expense of a
smaller envelope. Ten integration steps will cover all the current
' type weapons with their envelopes. ' v -
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COMPRESSION OF DRAG DATA

The behavior of a particular weapon's drag coefficient, Cp, as a
’ function of Mach number must be known to calculate impact ranges for that
weapon. Normally, this information is given in tabular form with some
weapons having more than 100 points in the table. Most aircraft have
the capability to carry many different types of weapons. It is desirable
to store all the Cp information of an aircraft's weapon repertoire in
the airborne computer to avoid loading the Cp data for different com~
binations of weapons. This requires storing drag coefficient data in
a more efficient form than a table.

The choice of a scheme to approximate the drég coefficients for a
given set of weapons implemented in a given aircraft is. influenced by
the following factors:

. Computer storage

Computer computation time

Delivery envelope for each weapon

Allowable downrange and time-of-flight errors.

S

It would be ideal to use one general expression to fit all the drag
tables for the weapon repertoire of a given aircraft. This would require -
a fairly powerful expression, because weapons like guns and rockets need
Cp values for Mach numbers much higher than free-fall bombs. Consequently,
extra storage would be spent on weapons that do not require the extra
capability. :

Several free-fall weapons have drag coefficient curves that differ
only by a multiplicative factor. The Mk 80 low-drag -series are one such
group of weapons with the Mk 84 drag curve conventionally taken as the
reference. Similarly, the Mk 106 Mod 2 and 3, CBU bomblet, and Sadeye
bomblet are another group with the Garve drag curve as the reference.
The region of interest of many' more drag curves camn be approximated by
multiplying these two reference drag curves by a factor and then trans-
lating them along the Cp and M axes until they match the original"
drag curves.

To further explain approximating weapon drag curves by this method,
let Cp(M) and M be the drag coefficient and Mach number of a weapon drag
curve. Let Cp(M) be the drag coefficient of a reference ‘drag curve and
let A, B, and DM be the multiplicative factor, drag coefficient transla-
tion, and Mach number translation, respectively, that when applied to the
reference drag curve will approximate the weapon drag curve. That is,

Cp(M) = A x ED(M + DM) + B (5)
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A hypothetical weapon drag curve, Cp, and reference curve, Cp,
are shown in Fig. 5. For simplicity of discussion, the Mach number
intervals M2 - M) and My ~ M3 are equal. Suppose the Cp curve is multi-
plied by an A so that the Cp and A x Cp curves are nearly identical but
for a Cp - axis translation, B, and an M-axis translation, DM. Thus
Cp could be expressed as Eq. 5.

b=

<

w

Q

'

w

w

8 3

|l T 3

R
F—DM——»'
|
M

FIG. 5. Curve Fitting Cpy.

For many weapons, Eq. 5 will not_give an accurate fit over a wide
interval of Mach number; instead, A, B, and DM should be chosen so that
the Cp fit is best for the Mach number interval that corresponds to the
delivery envelope for a particular aircraft.

Considering the weapons implemented in the A-7E, both the Mk 84 and
Garve reference drag curves are necessary to handle the free-fall weapons.
Instead of extending these curves to handle guns and rockets that have a
much larger Mach number range, a rocket-gun reference drag curve is used
in order to save computer storage and computation time.
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CURVE FITTING THE DRAG COEFFICIENTS

The last section discussed what reference curves were needed and
how they were used to approximate weapon drag curves for use in the
algorithm. The next step is to represent the reference drag curves
versus Mach number for the algorithm. The form of the function
used should minimize computer storage, logic, and computation time for
the allowable error in downrange and time-of-flight for the different
weapons. It was decided that each of the three reference drag curves
be divided into three regions with Cp expressed as a second-order
polynomial in Mach number for each region. Thus, for a particular

_ reference drag curve,

- 2
CD(M) = a, + a; x M+ a, X M (6)

where coefficients, ap, aj, and aj depend on the region the Mach number
M is in. Using Eq. 5 and 6, the drag coefficient for a particular weapon is
expressed as

cD(M)sz[ao+a x(M+DM)+a2x(M+DM)2]+E (7

1

In order to save computer storage and reduce the computation time

for the algorithm, another step was taken in the compression of drag
data. The computation C x (7/8 Cp), CKDG, is made in the Runge-Kutta
part of the algorithm where C is the bomb factor, d2/W, where d is

the weapon diameter in ft and W is the mass in slugs. One constant
per weapon in computer storage and two multiplications per integration
step 1s saved by expressing CKDG as

CF x CKDG + DKG (8)

CKDG =
S
where
CF = & x (/D% x W/w 9)
CRDG = d2/W x T/8 x ED (10)
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and

2

d T -
DKG=-{J—X8XB . (11)

In Eq. 9 and 10,_E'and W are the assumed diameter and mass for the
reference curve Cp. Finally, the form of CKDG in the algorithm is

(12)
Appendix B gives a list of by, by, and by for each region of the three
reference curves and the values of CF, DM, and DKG for 28 weapons
implemented in the A-7E.

In the algorithm, thrust appears in the total drag function
HH = TH/V - p x CKDG x V (13)

where
TH = thrust/W
p = air density
V = weapon velocity

and CKDG is defined above in Eq. 8 through 11. Figure 6 shows thrust
versus time for a typical rocket approximated by a constant, thrust =
total impulse/T1l, where Tl is decreased from actual motor burn time in
order to make thrust equal to the average thrust of region 2. The
mass of the rocket, W, obviously decreases during rocket burn time.
However, it is adequate for W to be approximated by a constant by
varying W until downrange error is minimized. The second stage of the
rocket, time after weapon release greater than Tl, is free fall and

TH will be zero.
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CONSTANT THRUST

THRUST

REGION 2

REGION 1
€ NOI193Y

/MOTOR BURN TIME

T1 TIME

FIG. 6. Thrust Versus Time Curve for a Typical Rocket.

CONCLUSIONS

The technique described in this document can be used to predict the
impact point and time-of-flight of any unguided weapon currently in the
inventory. There is no restriction in the basic algorithm as to mode of
weapon delivery. This wide applicability stems directly from the fact
that an accurate representation of the differential equations of motion
is numerically integrated to near-perfect accuracy by the algorithm.
Furthermore, the algorithm can be extended to handle the following
problems:

. Variable wind profile

Nonstandard air density

. Altitude and slant range fuzed weapons
. Shrike and other similar guided rockets

W N

It has been established that the basic algorithm can be coded success-
fully for an airborne digital computer. This coding induces a nominal
requirement on computer memory and provides a continuously computed impact
point in near real time.

There is no doubt that the algorithm can provide accuracy, flexibil-
ity, and efficiency in airborne weapon control applications.
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Appendix A
OPTIMAL SECOND-ORDER RUNGE-KUTTA FORMULAS

BACKGROUND

For the numerical solution of ordinary differential equations, a
large class of methods can properly be called Runge-Kutta methods. To
illustrate the use and characteristics of these methods, attention will
be restricted to the scalar-valued differential equation problem

y' = F(x,y) . y(x4) = Yo (14)

Later this problem will be interpreted in the case where y is vector-
valued (i.e., for a system of n differential equations).

The fundamental R-K technique is to replace the result of truncating
a Taylor series expansion of the form

=y +11y'+2£y"+h2y'“-* (15)
In+1 n n 2! 7n 3! ’n v

by an approximation iﬁ which yp41 is computed from a formula of the type
Yot1 = Yn + h[a0 F(xn,yn) + a, F(xn + alh, Y, + Blh)

+ ... + a, F(xn + aph, v, + Bph)] (16)

Here, the a's, a's, and B's are to be determined so that, if the right
side of Eq. 16 were expanded in powers of the integration step h, the
coefficients of a certain number of the leading terms would agree with
the corresponding coefficients of Eq. 15. The number of terms to which
this expansion agrees with the Taylor series is called the order of the
method. There is a fundamental difference between truncating Eq. 15
and using a formula like Eq. 16. In the'Taylor series method, all
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required information is obtained at the point xp, and the truncated series
is used to advance the solution over an interval of length h to the point
Xn+l. On the other hand, the R-K formulas use information obtained at

- certain points located in a disk centered at x,. In a sense, Eq. 16 is

a linear extrapolation of xpn to xp4] over an interval of length h, using

a weighted average of the slopes F(x,y) at specified points in the disk.

In practical applications, the R-K methods of lower order are almost

always more efficient than the Taylor-series approach. The second-order
R-K methods are particularly simple. The third, fourth, fifth, and so on,
order formulas are successively more accurate, but increase greatly in
complexity for the higher orders. For the fifth and higher order formulas,
the gain in accuracy 1s usually far outweighed by the: increased computation
time required for each integration step.

The choice of the "best" R-K formula for a particular problem is not
obvious. The lower order formulas are simple, but require more integra-
tion steps than the more accurate higher order formulas. On the other
hand, the complexity of the higher order formulas may require so much
computer time that this becomes the overriding consideration. Generally -
speaking, it is safer to use the lower order formulas when discontinuities
in the coefficients of the differential equation can be expected. Such
discontinuities frequently occur in bomb trajectories (e.g., drogﬁe de-
ployment or rocket thrust termination). The second-order R~K formulas
also afford the greatest flexibility in the distribution and size of the
integration steps. This is helpful when a change is made in coordinate
systems, as in the bombing algorithm. These considerations, along with
thelr simplicity, have led to the choice of the second-order R-K method
as the most appropriate for the bombing algorithm.

Once it is decided which order of formula will be used, there 1is
still the nontrivial problem of selecting the 'best'" of the second-order
methods. As will be shown below, the general second-order R-K formula
contains a free parameter that may be chosen arbitrarily. The free
parameter is usually chosen so as to either yield symmetrical formulas
or simplify the appearance of the resulting expressions. These considera-
tions are more important if the computations are to be done by hand and
much less important when a high-speed digital computer is used. The
classical methods of Heun, Euler, modified Euler, etc., are generated for
certain choices of the parameter. Certain other choices of this parameter
yield what are called optimal R-K formulas (Ceschino and Kuntzmann,

Ref. 4, or Ralston, Ref. 5). In this context, the words "best" and
"optimal" must be regarded with some degree of caution. For instance,

the optimal formulas obtained by Ralston have been developed to minimize
the coefficients of certain terms appearing in ‘the expression from the
truncation error of the formula. There are differential equations for
which this kind of optimization yields worse results than one of the
classical methods. (See Ref. 4.) This can happen because the optimiza-
tion procedures- used are directed at an arbitrary first-order differential
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equation. In what follows, optimal second-order R-K formulas are devel-
oped specifically for the differential equations involved in the bombing
problem. In this context, the word "optimal" can be interpreted as
meaning very accurate for the bombing problem.

ANALYSIS

The process of determining the constants in Eq. 16 for the second-
order R-K methods is simplified if Eq. 16 is written in the equivalent
form

Yol = Yn T 3¥0 * 2K (17
where

KO =h F(xn,yn)

Ky = h F(x_+ ch, y + bKj) ‘ (18)

It will be shown that the parameters ap, aj, c, and b can be selected
so that Eq. 17 and 18 constitute a second-order method. The idea is to
expand K; in a two-dimensional Taylor series of -the form

2
JF oF 2.2 3°F
Ky h[Fn + ch ax'n * 5Ky 55l 1/2(c h 2|
2 2
°F 2 ,23°F 3
* 2ebhKy 5]+ BT Ky Byz)] + 0(h7) (19)

where

F = F(xn, yn)

The term 0(h3) means that, under sufficient conditions on the
smoothness of F(x,y), the truncation error tends to zero like h3.
Substituting Eq. 18 and 19 into Eq. 17 yields

oF

o oF oF
yn+1 yn + (a0 + al) Fnh + a1<c %

L+ bR 2T ) w2 + o(hd)

n 3y|n
(20)
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By the chain rule of differential calculus, the differential Eq. 14
yields

y =73_£+F5—}7

By using the differential Eq. 14 and 21, the Taylor series Eq. 15 can be
written

2
h oF oF 3
=y + hF + o7 (——-+ F ——)n + 0(h”) (22)

Ya+1 21 \ox oy

By equating the coefficients of the terms hF, hZ 3F/3x, and h2 F oF/dy
in Eq. 20 and 22, the three following relations are obtained. .

1

1
a,.+a, =1 ca; =3 alb =5 (23)

0 1

This is a system of three equations in four unknowns which can only be
solved in terms of one arbitrary nonzero parameter; taking c as this
parameter yields ‘

-1 b= c o 2c-1
a % 2c (24)

Therefore, the general form of the R-K method (Eq. 17 and 18) is
1
Yol = Ya * 2 [2e - D Ky x| (25)
where
Ko = h F(xn,yn)
K;=h F(xn + ch, Yo + QKO) (26)

Since for any nonzero c the Taylor-series Eq. 22 and the R-K Eq. 25
agree through the coefficients of the h2 terms, Eq. 25 and 26 are the
general second-order R-K formulas.
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By taking higher order terms in Eq. 20 and 22, the truncation
error E;, in Eq. 25 can be estimated by

3
- ch 3c - 2 11y oF 1 4
s D [( c ) Yn 3 3y|n 'n ] + 0(h) (27

(For a detalled derivation, see Ref. 6). The first term in Eq. 27 is
the error expression used to develop the "optimum'" R-K formulas of
Ralston. Except in trivial cases, it is not even possible to select c¢
so that Ep behaves like O0(h%4). The various classical second-order R-K
formulas are obtained from the generic form of Eq. 27 by choosing the
appropriate value for c.

It can be shown that, if F is smooth enough, the numerical solution
obtained from Eq. 25 for any nonzero c converges to the exact solution
of Eq. 14 as h approaches zero. In real-time applications, such as in
a weapon delivery computer, it is desirable to take as few integration
steps as possible. This means that in the bombing algorithm the step
size h should be as large as possible without unduly degrading the
results. Since the error induced by Eq. 25 depends not only on h, but
also on ¢, it seems reasonable to conjecture that the error can be made
small by an appropriate choice of ¢. In fact, the best value of ¢
depends not only on h, but also on the differential Eq. 14 and its
initial condition, yg. If the differential equation, the step size h,
and the number of steps are fixed, the optimal value of ¢ depends only
on the initial condition yg. If the initial conditions are generated
by a continuous function (e.g., an aircraft path), the optimal value
of ¢ for smooth enough Fs in the differential equation depends con-
tinuously on the initial value yg. If the behavior of ¢ with respect
to yp can be predicted beforehand, the best possible numerical results
for the step size chosen are obtained from Eq. 25 and 26.

Before discussing how the optimum values of c are obtained in a
practical problem, some decisions must be made as to the amount of
error that will be tolerated. In many applications the value of ¢ can
be adjusted so that the total truncation error is zero. For instance,
in applying this to the weapon delivery problem it appears that values
of ¢ always exist which yield zero error in the numerical solution.
However, a zero-error solution may not be needed or even desirable in
practice. It will become clear in the following discussion that there
is a trade-off between how accurate a solution is needed and the amount
of computation required to generate c as a function of the initial
" condition yqg.
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The analytical determination of c is equivalent to solving the dif-
ferential Eq. 14 in closed form. Of course, this is not usually possible.
The obvious scheme is to solve Eq. 14 numerically using a small enough
integration step so that an accurate solution is generated. This can be
done for selected values of the initial condition ygp and used as réference
values for determining c. Once this has been done, the step size h and
the number of steps to be used by the optimal formula must be chosen.
Then, for any one of the initial conditions, Eq. 14 can be solved for a
sequence of c¢ values. Then, the value of c¢ for which the best results
are obtained (usually the one that gives zero error) can be chosen.
This procedure will generate a discrete sample of the behavior of c 4s
a function of the initial condition. Then, the sample points can be
approximated with an appropriate fitting function to give an expression
for ¢ as a function of the initial condition yj.

The above description- of the determination of ¢ has purposely ‘been
discussed in terms of imprecise generalities. There are two reasons
for this: (1) tying down all the loose mathematical ends is outside the
scope of this discussion; and (2) even if the technique were put on a
firm theoretical basis, many assumptions and compromises would be necessary
to determine its applicability to the weapon delivery algorithm. However,
it is clear that' the process for determining c could be viewed as a problem
in optimization theory where the objective function (the truncation error)
depends on solution of a differential equation. In the next section the
application of this technique to the weapons delivery algorithm will be
discussed. This will clarify some of the ideas involved and will show
what must be done when more than one differential equation is involved.

APPLICATION TO THE BOMBING ALGORITHM

Systems of differential equations are involved in the bombing
algorithm. The previously discussed technique c¢arries over to systems
of differential equations with very little change. To illustrate this,
the general R-K equations will be given for a system of two equations in
two unknown functions. Then, the generalization to n such equations will
be obvious. Let, '

q :
I = F(t,x,y) (28) -

d
&= atx,y)
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with initial conditions x(tg) and y(tg) specified. The general second-
order R-K formulas for this problem are

1
X + E'E[(zc' - 1) K, + Kl] (29)

x
"

n+l

1
- - +
Yy = Yot ocl(2e - 1) My + ]

where -
K. =h F(tns xn’ yn)
M. =h G(tn, X s yn)

K, =h F(tn + ch, x + cKO, Y, + cM (30)

0

M = h G(tn + Ch, xn + CKO, yn + CMO)

Equations of the type of Eq. 29 are used in the weapon delivery problem.

The exact solution of the system Eq. 28 is a vector with components
x(t) and y(t). At some specific point, say t = tj, the numerical solu-
tion vector has components X(tj;) and Y(tj). The error in the numerical
solution is measured by how close the two solutions are in the vector
norm sense. For instance, for the Euclidean norm the error is given by

B(e) = Vix(e) - X607 + (r(e)) - ¥(e)? (3D)

The parameter ¢ can now be chosen to minimize E(tj). Clearly, the
optimal value of c depends now on both initial conditions x(tgp) and
y(tg). It is usually not possible to choose ¢ so that E(t;) is zero.
However, it can normally be chosen so that the error in one component
of the numerical solution is zero. In the weapon delivery problem, by
far the most important component in the solution vector is the impact
range. Therefore, c can be adjusted so that the range at impact has
zero.error. The altitude variable Y is automatically exact at impact
since it is forced to target altitude. Since the velocity components
Vx> Vy, and the time of fall, tf, are closely coupled with the other two
variables, they also tend to be very accurate at the impact point.
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After making computer runs using typical release conditions for
each type of weapon, c equal to 0.75 seemed to work best for those
weapons using the Mk 84 reference drag curve and c equal to 0.7 for
all other weapons with higher drag. Since the low-drag bombs are not
as sensitive to a change in ¢ as the higher drag weapons and the value
0.7 works almost as well for ¢, it was decided to use c equal to 0.7
for all weapons in order to save computer storage. It should be pointed
out that picking the value of 0.7 for c was based on the algorithm using
10 integration steps. If more than 10 integration steps are used, 0.7
for ¢ would be adequate even though some other value might work better. -
However, 1f fewer than 10 integration steps are used, it might turn out
that more than one ¢ should be used to handle all the weapons.
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Appendix B
WEAPON CONSTANTS FOR DECODE

REFERENCE DRAG CURVES

The use of three reference drag curves for the compression of drag
data was discussed earlier in this report. The coefficients for the
Mk 84, Garve, and rocket-gun reference drag curves are given in Table 1.
For further detail see the FORTRAN listing of the algorithm in Appendix C
under statement labels 32, 33, and 34.

TABLE 1. Reference Drag Curve Coefficients and Cuts.

Reference curve

Coefficient Mk 84 Garve Rocket-gun
Region 1:

bo 1.572924 x 10--3 3.53503924| 0.104115

by 0 -3.34778216 | -0.230347

by 0 © 2.87262413 0.167644
Region 2:

bg 4.67840889 x 10~2 11.2616503 | -0.194037

by -0.109711069 -27.4162512 0.401478

by 6.6548007 x 1072 21.7308359 | -0.164612
Region 3:

bo -0.116380157 -23.7915472 7.33246 x 10~2

by 0.217643894 44.2607764 | -2.03275 x 10~2

by -9.76706845 x 102 | -14.4996046 | 2.44682 x 10™3

Cut

First cut, CT1 0.834 0.622 1.032
Second cut, CT, 0.977 0.885 1.3 .
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WEAPON CONSTANTS

Table 2 lists the necessary weapon-dependent constants for the
algorithm for 28 weapons implemented in the A-~7E airbornme computer.
The definition of terms is given on pp. 11 and 12, except for IDNO and
IREF. An identification number, IDNO, is assigned to each weapon for
programming purposes in Appendix C. IREF 1, 2, and 3 refer to reference
drag curves Mk 84, Garve, and rocket-gun, respectively. Some weapons
have drag curves that can be approximated by a constant in the region
of interest with only a negligible loss in bombing accuracy. If so,
CFORM1 and CFORM2 will be zero and, therefore, any of the three reference
curves can be used. Appendix C gives a FORTRAN listing of the algorithm
and the weapon-dependent constants for the 28 weapons listed in Table 2.

DECODE

The weapon-dependent constants required for the algorithm are stored
in DECODE. Also, DECODE contains the necessary logic to load the correct
constants for the particular weapon the pilot has selected. As mentioned
in a previous section, on first-pass the necessary weapon constants are
loaded in DECODE. After first-pass there is no need to go through DECODE
before entering the algorithm for a trajectory calculation.

As previously discussed, ‘an IBM 4-Pi Model TC-2 airborne computer
was used as a reference in determihing the number of computer words and
timing for the algorithm. Using the scheme that will be outlined below,
a total of 174 words were needed to store the weapon-dependent constants
for 28 weapons implemented in the A-7E, plus 129 words for instructions
to locate requested weapon and load appropriate constants. The scheme
used for DECODE in reality will depend on the particular aircraft and its
fire control requirements and how the algorithm is interfaced in the
airborne computer.

In order to save computer words in DECODE, the weapon constants must
be stored compactly with no duplication, if possible. At the same time,
the method of loading the requested weapon constants should be simple and
yet general enough to handle additional fire control requirements that
may not have been anticipated. In our hypothetical scheme, one word is
used to identify each weapon and has the form shown in Fig. 7. Figures 8
through 11 show in detail the storage table used. Bits O through 11 of
the code word are tested to see which weapon constants are needed from
storage of Fig. 8. For example, if the weapon constant DKGl is required,
then a 1 will appear in bit 2, etc. Figure 9 shows what the storage
table of Fig. 8 looks like for the first five weapons with IDNO equal
to1l, 2, 3, 4, and 5.

Bits 10 and 11 of the identification word are used to load the cor-

rect reference drag curve coefficients CC and CT as shown in Fig. 12.
There are 9 numbers to load from CC and 2 numbers from CT.
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1 2 3 456 67

8 9 10 11 92 13 14 15 I

EJECTION
VELOCITY

RELATIVE

ADDRESS
FOR

STORAGE

FIG. 7. Identification‘ Word.

) CODE WORD NEEDED FOR EVERY WEAPON
CFORM1 1INBITO
CFORM2 IF 1IN BIT 1
DKG1 IF 1 INBIT2
. DKG2 (F1INBIT 3
4
] DM1 IF1INBITA
< DM2 IF1INBITS
3 ITYPE, NSTEP, NT j
E o$ IF1INBITE
DMAX, DS2
FN (F1INBIT7?
st AF1INBITS
J, VMUZ F1INBIT®
1 CODE WORD NEEDED FOR EVERY WEAPON
CFORM1 IF 1N BITO
oz CFORM2 IF1INBIT1
ze
8% DKG1 IF11NBIT2
w
6z . .
® [ ]
1 vMuZ IF1INBITO

FIG. 8. General Storage for DECODE.
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36

IDNO=1

CODE WORD

DKG1

IDNO=2

CODE WORD

DKG1

IDNO=3

CODE WORD

DKG1

IDNO=4

CODE WORD

CFORM1
DKG1

IDNO=§6

CODE WORD

CFORM1
DKG1

CODE WORD

[ ]
*
*

FIG. 9. Actual Storage Table for the First Five
Weapons Listed in Table 1.

01 213 46 6|7 8 9 10|11 122 13 14 15

ITYPE NSTEP NT

FIG. 10. Word Used in Fig. 8.

Bol[2]3[as[e|7] 8]0 10]11]12]13]14]1s}
[
<
&
5 3
5|8 5oy
A EARAR i N[E >
oclo|lov]| ol o g Qe =
¥ | X
A HHEBEHEHEIHER]
FIG. 11. Code Word Used in Fig. 8.
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CcC cT

MK 84 MK 84
{ 9 WORDS ) { 2 WORDS )
GARVE GARVE
{ 9 WORDS ) { 2 WORDS )
AOCKET-GUN AOCKET — GUN
{ 9 WORDS ) { 2 WORDS )

FIG. 12. Polynomial Coefficients CC and CT.
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Appendix C
FORTRAN LISTING OF ALGORITHM

The FORTRAN listing given in this appendix follows the logic of the
algorithm in Fig. 3 as closely as possible. That is, statement label
1001 corresponds to RK1l in Fig. 3, 1002 corresponds to RK2, etc. The
‘first part of the FORTRAN listing is DECODE in a form somewhat like the
DECODE scheme discussed in Appendix B. However, it is impossible to
duplicate the machine language scheme in FORTRAN.

There is a brief computer printout after the FORTRAN listing of
computed time-of-flight and impact range for one release condition per
weapon. Each condition is "looped'" four times to show rate of convergence
to the impact range solution for the algorithm. Also, the computer print-
out can serve as a check if the listing is programmed by the reader on a
different computer.

Tables 3-5, at the end of Appendix C, give a brief summary of impact
range errors to be expected under some nominal release conditions for the
Mk 82 unretarded Snakeye, Rockeye II, and Mk 82 retarded Snakeye weapons .
using the algorithm, :
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DIMENSION CT(202) » CC(2,302) » VKTS(20) » ALT(20) , DEG(20) »
+ NUMID(40)
G % 32174
RAD = ¢01745329
A= o7
AA = QeS/A
YT = 040
VYK = =540
FRACT » .5
828 FORMAT (i1M1,6Xs'VKTS ALT DEG TF RANGE ', X,
+ t1DNB Y )
39 CBNTINUE
WRITE (108,898)
109 CONTINJYE
899 F9RMAT (16G5+0)
READ (105,899) KIVa{(VKTS(1)slul,KlV)
I (K1V EQe 0} G9 T9 95
READ (105,899) “Yas (ALT(1),1m1,KY)
READ (105,899) KDEG,(DEG(1),1s1,KDEG)

P N o
NEFWNNLOVENPA WML

@ 20 o 20 00 00 e 20 20 9 S5 oo B 5 08 S8

[T ey
0 00 3 O
ae v om

2ot READ (105,899) KIONY, (NUMID(I),1m1,KIDNG) s JBIIG
21! DB 999 [1DNBs1,K1DN9

22! TONBaNUMID(IIDND)

231 NS2 = 0.0

241 NT = 0

25 NL = 10

268 1CALEC » O

273 CF3R’ML s 0.0

28: CFBRM2 = 040

291 DYy & 060

30: nMe » 040

3 NKGL s 040

321 PDKGE2 = 040

33: VMUZ = 040

34 VE 8 0+

351 SL ® 0D

361¢ NDYMAX = 740

37! NSTEP s 9

381 JTYPE s et

398 FN ® 000

40: KaN e O .
411 188TH = ¢

423 NLM1 3 NLei

43 G% T8 t1,2435453,6,7,8,9010011512,13014,18,16217»18,19,20,
L2 + 212225235248, 25,25027,28) , I1DN®
453 1 IREF = &

b6 NKG] = 2:5506E=3

k71 G5 TO 3%

48: 2 IREF = &

493 NKGL u 6:2994E-3

50? A9 T 3¢

S51: 3 IREF = &

52¢ DKGY & #e.01E~3
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53: 58 T 31

541 & IREF e« 2

551 DMAX ® 600

56 CFBRM1 = 3¢9236E-3
574 DKG]1 & 20754E~3
581 639 T8¢ 31

591 5 IREF s 2

601 DMAX = 640

61 CFRRM1 8 349077C«3
621 DKF1 & 6£43649F«3
631 69 T8 31

643 6 IREF & &

65 DMAX ® 640

661 DKG1 » «0Q21266
67 G35 T8 31

68 7 IREF » 1

691 GFBRMY = 24,5704
70t G T8 31

71: 8 IREF = &

723 DKG1 = 9.767E=3
73 8% TH 31

7487 9 IREF = 1

7581 CFORMY = o064
76: GS T8 31

?77: 1o IREF = 1

78 CFORMY = {04932
791 G TR 31

80: 11 IREF s 1

81t CFERMY = 143431
82: G% TH 31

83: 1» IREF =«

841 CFARML = (.21
851 33 T9 31

86: 13 IREF = 1

871¢ CFORML = 1,0
88 G9 T8 31

89t 14 IREF = |

501 CFBRMY & 3.4P
91 DKG1 s #14223E=3
921 09 T9 31

931 15 IREF = 1 :
9% CFARMY = 3,4972
953 69 TO 31

961 1¢ IREF = 1

971 CFBRM1 = 14605
981 G T8 31

9% 17 IREF = &

.00; DKGL & 7¢329E+3
101 G T8 31

1021 18 IREF » 1

103 DMAX ® 640
104 NSTEP w |
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105 ITYPE = 1
- 106¢ 1BATH s 2
107t NDKBL = 74325Ce7
108: CFORM2 = 1.6R895Z-2
- 109 HM?2 2 <38
110 DKG2 s «17166
y 111 NS?2 = ¢35
112 NT = &
- 113 NS = 4617
. 1142 SL = »+000269
115 59 T8 31
1162 1o IREF = 1
1172 DMAX s 3.5
118 ITYPE o 1§ *
119 NSTEP =
120¢ T1 = 40
121 130TH = 2
122 CFBRML = 2.0754
123! CFORM2 = 2217
124 NS2 w ok
125 NT s 3
126 XSTEP- » NSTEP
127 NS = T1/XSTEP
128 G3 TA 31
129: 20 IREF » 1
130! NYAX & 45
131: ITYPE & |
t132: NSTEP = 2
1332 TL = 40372
134 IBATH = 2
135 CFAORML & 2,2973
136 NM1 a «32
137 DKG1 u B4175E=2
133 CFORM2 & 141134Ee2
-1391 DMZ2 a o4y
14018 PKG2 = +16885
141 NS2 = .6
142¢ NY = 2
1432 XSTEP s NSTEP
144 NS = T1/XSTEP
145 68 TH 3%
146 21 IREF =
147 DMAX s 460
. 14814 ITYPE =
* 149 NSTEP =  §
150 TL = 5.0
1511 188TH = 2
1828 CFBRMI = 22,2404
153: CFARM2 = <1178
154 NS2 = <6
155 NT = 2
= 156 XSTEP = NSTEP
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157 DS = T1/XSTEP
1582 6% T8 31

1569: 2> IREF = 1

160 DMAX = 6.0
161 ITYPE »
162¢ NSTEP = 4
163¢ 1B8TY = 2
164} PDKG1 & 9¢767E=3
1651 CFARM2 = 2430625F=-2
1661 NDM2 = «38
1671t NKG2 = «23287
168! NS2 = 35
1693 NT = &

170 NS s 4679
171 SL = «¢J00303
1728 3% TR 31

173: 23 IREF = 3

1742 DMAX » 145
175: CFORM1 » 2+9964
1761 NKG1 = *,014992
177¢ VMUZ & 330040
178 58 TH 31

179 24 IREF = 3

180 DMAX s 4.0
181 ITYPE ®» 2
182! NSTEP & &
183! CFBORMY = +82
1842 CFBRM2 = 140
185 T{ = 154
1861 FN o 1746
187 XSTEP ® NSTEP
188¢ DS = TI/XSTEP
1891 5% T8 31

190¢ 2% IREF » &

1911 DMAX s 300
192: NT = 9

193¢ NSTEP = |
1948 ITYPE = O
1983 DS = 98

1961 NE2 s 3

1971 OKGE o 1048
1981 G8 T8 31

193t 24 IREF u &

2001 DMAX @ 2458
201 NT » 9

202! NSTEP =
2033 ITYPE = O
2041 DS s 89

2051 NS2 s 25
2061 DKG2 » 2.
2071 G TO 31

208: 27 IREF = &

42



NWC TP 5416

2091 DMAX = 2,0
- 2101 NT = 9
2111t NSTEP = 1§
) 212¢ 1TYPE « O
~ 213 NS = ¢89
2141 NS2 » o2
‘ 2153 DKG2 » 247
P16 6y T 34
- 2871 2« IREF w» 2
. 218 DMAX = 5.0
219: ITYPE = 2
2201 NSTEP =
221t CFBRM1 » ,1514
222! CFORM2 = <1514
223 NT 8 2
224 NS & o5
2251 DS2 = b

2261 31 39 T8 (32,33,34,51) » IREF
2271 32 CcC(ls121) = 1¢572924F=3

2281 CC(122+8) » 00
2291 CC(1,3+1) » 0e0
230! CC(241+1) = 4e67R34NRAJED
231 CC(2s221) u =e109711069
232¢ CC(2s351) 8 6+6548BN07Ee?
233 CC(3,1,1) o =0114380157
2341 CC(3s201) » 2217643894
235 CC(3,301) a =»9e76706845E=2
236¢ CT(1,1) = 834
2371 €T(2:,1) » 4977
2381 IF (IBBTHe1) 33,51,33
239: 3% CC(1,4,IRBTH) = 3453503924
2401 CCl1,2,1RBTH) = «3:34778246
241 CCl1,3,]1BBTH) = 2487262413
242 CC(2,1,IBBTH) = 11.2614503
2431 ecl{2+2,1B0TH) n =27.4162512
244 CC(2+3:]188TH) = 2147308359
2451 CC(321,]BOTH) w «23e7915472
2461 CC{3,2,1RBTH) & 442807764
2471 CC(3,321BBTH) » =14+4996C46
248 CT(1,1B8TH) = o622
2491t CT(2,130TH) = o885
250: 8% T8 51
2511 34 CCli,ts1) = 104115
2521 CC(1,2+1) = »e?30347
253 CCl1,321) » 167644
2548 CC(2s151) & 01940327
2551 CC(2s2,1) » 2401478
256 CCL2,301) » eo16461?

} 2571t CC(3s341) ® 7033246E=?

4 258 CL(322+1) s «2:037275C2

. 259 CCU3s321) » 2e446AR2E=3
2608 CT(1,1) = 1037

43




NWC TP 5416

261
pé2t
2631
2642
2651
2661
2671}
2681
2691
270!
2711
2721
273t
2741
275:
2761

277¢

278!
2791
2801
281:
282
2834
2841
2851

2861

2873
288,
2891
290¢
29114
2921
2934
2941
2951
296!
2971
2981
2991
300
3011
3021
303}
3041
3051
306¢
307¢
3081
309%
3101
311
ai2:

b4

S1

894

1n01

1002
1004

1003

1005
1007

1006
1008

1009

€T(2,1) » 143

B8 999 1ANGe1,KDES

THETA » DEG(IANG)®#RAD

Ny 999 [Vatls.KlV

D8 999 IYsi,KY

U s VKTS(IV)Inle4R78

DEL = ATAN(VE/U}

V s SORT(UsUeVESVE)

VXA » (VaVMUZ) # COS(THETA=DEL)
VYA = (V4VMUZ) & SIN(THETA=DEL)
KAN = Q

ICALC = O

FERMAT (1K )

WRITE (108,894%)

DB 999 JOBNsi,4

CF s CFBRM1

DM s DM1

DKG = DKGH

MSTG = 1§

KFPLAG » O

X ®» 000

TS o T

T e 00

VX ® VXA

VY ® VYA

NUM = 0O

TYd = FN

Y o ALT(1Y)

YA s Y

1IF (ITYPE) 1003,1004,1004
D = DS#SLaY

3% 78 10608

XSTEP s NSTEP

XNSTEP = XSTEP+FRACT

D & TS/XNSTEP

IF (ICALC) 1006,1007,1006
D & DMAX

1ICALC »- 3

KFLAG » §

3% T8 1008

1F (O»DMAX) 1008,1008,1907
AD » A®D

I 5 of

YO s VY

VX0 = VX

vyl s VY

AHO s 2¢37576E=3=Y4(65:R7557EwBoYube71618E%13)
V » VX$ABStVY)/240

VG 8 VX#VYXeVYsVY

V » (VEVSQ/V)/2e0

V s (VeVSQ/V) /260 .
CM = VE(BeIBLAE=4e3¢26E=9aY ) +DM
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3131 1c10 IF (CM=CT(1,MSTG)) 1012,1012,1011

314t 1012 IREG =

3158 69 T8 1015

316: 1311 IF (CM=CT(2,MSTG)) 101321013,1014

317¢ 1013 IREG = 2

318 89 78 1015

319! 1014 IREG = 3

320! 1015 CKDG » DKG+CF#{CC(IREG,1,vSTG)+(CCIIREG,2,M83TQ)+CC(IREG,I3,MSTG)»

321! +  CMIsCM)

322! U 3 TA/VaRHAI=CKNGHY
323 AN2 » HHwyX

324 AP2 = HHsVYel

325: 1 & I+4

3263 1915 tF (1) 1013,1017,1518
327: 1117 Y = YQ+ADWVY

328! AP1l » AP2

329 ANY = AN2 “
330! VX & VY0O+AD#AN1

331 VY s VYC+AD®APY

332 59 T8 100¢

333: 1218 T s T4D

334 X u XeD® (VXO+AA®(VXeVX]))
335 Y =8 YO+D#(VYD+AA#(VYaVYD))
336 VX 8 vXO+Du(ANL+AAX(AN2=ANT))
3372 VY » VYC+D# (AP +AA%(APPeADL))
338 NUM & UM+t

339: #8956 FORMAT (5Xs6(F12:2,3X)s'KFLAG & 1,11,5X,'AT END OF RUNKUT!/)
340! IF (KBN+1-JBUG) 697,697,699

3411 627 WRITE (108s896) TaXaYrVXavYeD,KFLAG
342: 699 CANTINUE

3437 1019 1F (NLMieNUM) 1035,1030,1020
3442 1035 TL = (YTeY)/VY

345: 17936 IF (ITYPE) 1037,10738,1037
346% 1038 KFLAG = O ’

347 G3 TR 1040

348 1537 IF (KFLAG) 1098,1039,109%
49 1039 X = XeTLeVX

3501 1740 T » TeTL

351: 1241 69 TH 1098

352t 1739 IF (vY=VYK) 1031,1933,1)233
353! 1033 KFLAG = |

3547 1034 48 T9 1098

355t 1031 F (YA~YT) 1033,1033,1032
3568 1C37 XNLNM = N{eNUM

357: D » (YTeY)/Z{VYEXNLNM)

358: 69 TR 1006

3597 1020 IF (VY) 1021,1022,192¢

360: IN22 YA s Y

3611 68 .To 1023

3621 1721 tF (YeYT) 1030,1023,1023
3637 1023 IF (NUMeNSTEP) 1008s1024,1027
3641 1024 IF (ITYPEe2) 1025,1026,1025
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3651
8661
367!
3681
3691
3701
7zt
3721
373%
741
3751
3761
1771
1784
1791
1801
3811
821
3833
3841

46

1025

in2é

1027

i029
1028

BeS

+

MSTG s 2

nKG = DKG2

pDM s DM2

D = 069

T™H 8 00

cF s CFORM2

1F (NUMsNSTEPeNT) 1029,1028,1008

» s D+sD82

G9 T8 1008

XLNUM = NLMi=sNU™

XLNUM & XLNUM#FRACT

D » (TS=T)/XLNUM

By T8 1008

FORMAY (SXsF6e0sPXsF7e¢0s2XaFhe0s2XsFT02,2XsP%22%01 04,
3X,'KFLAG = *,11) '

1098 KON = KONet

999
is

WRITE (108,898) VKYS(IV),ALT(1Y),DEG(IANG)»T.Xs IDNOIKFLAG
CONTINUE

89 T 100

END
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VKTS

48500
B0
480
4500

#850.
4500
480
4500

4500
450

K500

4500

4850
4800
45D
4GB0

450
480
4500
4S50

W50
4500
480
450

480
450
4500
480

4500
480
4800
4500

13 -1e )
4500
4850
U5De

450

450
4800

ALT

3000.
32000,
3000,
3500,

3000,
300G,
30Q0.
3000.

3000+
3000,
3200,
3000

3000.
3000,
3500,
3000

3300
3000
3000
3000

3900
3000
3000
3000

3000.
3000
3000.
3000.

3000
3000,
3000
3000,

3200,
3000
3000
3200

3000.
3900
3000

DEG

*10.
=10
*i0e
=10

=10,
=10
=10
=10

«10-
=10
*10.
*10e

=10
=10
*10e
*10e

10
=10
*10e
«10.

*10e
=10
=$0e¢
*10.

-10.
*10.
=10
*10.

=10,
*10.
=10
«10¢

*10.
=10
10
*10.

*1{0.
=10
=10

TF

1Ce28
1028
1G.28
10628

1nNe38
10046
1Debs
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4500 3000« =10 1671 573740 21 KFLAG * 1
4500 3000« =40. 15.82 604R7 21 KFLAG = 0
450 3500¢ =10 1582 © 605008 21 KFLAG ®" O
4500 3000« «10s 1582 6050¢6 21 KFLAG ® 0
4500 3000¢ =40 1R«45 294244 22 KFLAG "
4500 3000« =10 17078 3295.4 22 KFLAG * O
450 3000s 10 1779 330247 22 KFLA3 = 0
459 3000« =10 17.79 330246 22 KFLAG ® O
4500 3000 *10s 10,58 111524 23 KFLAG = 1
. 4500 3000s =100 1059 109395 23 KFLAG * O
4500 3000¢ =10 1059 10939.9 23 KFLAG * O
450, 3000+ =10 1059 1993949 23 KFLAG * O
450 3000« =10¢ Re bR 1196848 24 KFLA3 * 1
450, 3000s =10 7436 1281249 24h KFLAG * O
4500 3000« =10 7034 1282641 26 KFLAG * O
450 3000¢ *10e 7¢34 1282643 26 KFLAG * O
450, 3000 =10, 31440 1661.3 25 KFLAG ®* O
4500 3000s =10 214D 166143 25 KFLA3 ®* O
4800 3A200¢ *10¢ 31¢40 166143 25 KFLAG ®» O
4800 3000¢ *10. 3140 166143 25° «FLAG * 0
450 3500s =10» 35474 138146 28 KFLAG = O
450 3500 =10» 35.71 13816 26 KFLAg = O
450 3000s =10e 35.71 138146 26 KFLAG * O
4800 3000¢ *=10¢ 3571 138146 26 KFLAQ * O
4500 3000¢ <«10¢ 40487 121440 27 KFLAg ® O
450, 3000s =10 40487 128440 27 XFLAg * O
450 3000« *10s 40e87 121440 27 KFLAG * 0
480 3200 =10 40eR7 12140 27 KFLAG * O
450 3000¢ =10. 21451 2061.9 28 KFLAG * 1
4500 3000 *100 20049 244149 28 KFLAG * O
450 3000¢ «10. 20450 PL49.e7 28 KFLA3 * O
s 0

4800 3200¢ *10+ 20459 244946 28 ' KFLAG
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TABLE 3. Sample Errors in Impact Range Calculations for the

General-Purpose Bomb Mk 82/Snakeye/Unretarded.

Release conditions

- Impact range, ft

Impact range

Velocity, | Altitude, | Angle, | Ballistic tables | , error,
knots £t deg | NAVAIR 01-1C-17a | Algorithm £t
2,500 0 8,039 8,040 1
400 5,000 -10 9,158 9,159 1
12,000 -30 10,536 10,538 2
12,000 -45 7,530 7,531 1
2,500 0 8,998 8,996 -2
450 5,000 ~10 10,025 10,024 -1
12,000 -30 11,340 11,341 1
12,000 -45 7,998 7,999 1
2,500 0 9,946 9,942 -4
500 5,000 -10 10,843 10,840 -3
12,000 -30 12,067 12,068 1
12,000 -45 8,406 8,406 0

@ Reference 7.

TABLE 4. Sample Errors in Impact Range Calculations for the Cluster Bomb
Mk 20 Mod 2 (Rockeye II) With a Fuze Setting of 4.0 sec.

Release Conditions

Impact range, ft

Impact range

Velocity, | Altitude, | Angle, NWL ballistic error
knots ft deg table 183 Algorithm fe
2,500 ~-10 5,197 5,198 1
400 4,000 =20 5,241 5,241 0
5,000 -30 4,842 4,842 0
8,000 ~45 4,268 4,269 1
2,500 -10 5,609 5,599 -10
450 4,000 =20 5,612 5,611 -1
5,000 -30 5,158 5,154 -4
8,000 =45 4,548 4,561 13
2,500 ~10 5,966 5,962 =4
500 4,000 -20 5,948 5,950 2
5,000 =30 5,456 5,459 3
8,000 =45 4,828 4,838 10

@ Reference 8.
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TABLE 5. Sample Errors in Impact Range Calculations for the
General-Purpose Bomb Mk 82/Snakeye/Retarded.

Release conditions Impact range, ft Impact range
Velocity, | Altitude, | Angle, | Ballistic tables error,

knots £t deg NAVAIR 01-1c-1T | Algorithm £t
1,000 0 2,060 2,054 -6

400 1,000 -10 2,534 2,525 -9
1,500 -10 2,972 2,967 -5

2,500 -20 3,072 3,069 -3

1,000 0 3,242 3,244 2

450 1,000 -10 2,669 2,663 -6
1,500 =10 3,128 3,130 2

2,500 ~20 3,219 3,223 4

1,000 . 0 3,401 3,412 11

500 1,000 -~10 2,786 ' 2,784 -2
1,500 -10 3,263 3,272 9

2,500 =20 3,346 3,357 11
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