NATIONAL HARBOR, Md.—The unmanned MQ-4C Triton aircraft remains on schedule to arrive in Guam later this year to begin an early operational capability, said Capt. Dan Mackin, Triton program manager, April 9 during the 2018 Sea-Air-Space Exposition.

The U.S. Navy’s new persistent, high-altitude intelligence, surveillance and reconnaissance (ISR) platform, Triton will ultimately operate continuously from five orbits, with four aircraft assigned to each. The concept is for one Triton to be departing for orbit while another is arriving back, one remains on station, and one is down for maintenance, Mackin said.

The Seventh Fleet orbit will be the first to stand up when two “baseline” Tritons arrive in Guam later this year. Guam will receive its full complement of Tritons when two upgraded variants arrive in 2021, when the program is scheduled to reach initial operational capability (IOC), Mackin said.

Whereas the two baseline aircraft come equipped with electronic support measures (ESM) that pick up the radar signals of ships, all successive Tritons will feature a more robust set of low- and high-band multi-intelligence (multi-INT) signals receivers, a capability that will allow for the sundown of the EP-3E ARIES II as the Navy’s signals-intelligence platform.
The Triton program has been conducting operational test flights at NAS Patuxent River, Maryland, since February, but will soon transfer that testing to Point Mugu, which received the first operational Triton in November. The two baseline Tritons will depart for Guam following completion of operational test, Mackin said.

As of March 20, the Triton program had conducted 168 development and operational test flights totaling 1,170 flight hours.

In addition to Triton, several other programs under Program Executive Office for Unmanned Aviation and Strike Weapons (PEO(U&W)) shared news of recent successes.

MQ-8C Fire Scout set for IOC in 2018

Halfway through production, the MQ-8C Fire Scout unmanned helicopter is ready to begin initial operational test and evaluation this month and on schedule to reach IOC by the end of the 2018, said Capt. Jeff Dodge, Fire Scout program manager.

Dodge said the deployment history of the MQ-8B Fire Scout—more than 8,300 flight hours across 12 deployments since 2009—had informed development of the MQ-8C, which has increased range and payload capacity and more than double the endurance of its predecessor.

“We’ve made a lot of improvements from those first airframes, and we’ve incorporated all of that into the MQ-8C to get the system that we have today,” he said.

The program also expects to demonstrate by the end of 2018 an ability to integrate with the Link 16 data network to send real-time targeting information to weapons already in flight, “to allow for more precise targeting in those over-the-horizon scenarios,” Dodge said.

Italian tests, extended range make for ‘exciting’ time in AARGM program

A partner in the Advanced Anti-Radiation Guided Missile (AARGM) program, the Italian Air Force last week completed testing of the AARGM on its Tornado ECR jet with two successful live fires at Naval Air Weapons Station China Lake, California, a major step towards finishing its initial operational test and evaluation of the missile system, said Capt. Matthew Commerford, program manager for the Direct and Time Sensitive Strike Program Office.

Italy will be the first foreign nation to employ AARGM.

“It’s exciting for [the Italian Air Force] in that after all this work with the cooperative development over these past years, AARGM is now an operational capability for them,” Commerford said.
As for “the next exciting thing” in the AARGM program, Commerford identified that as the extended-range variant currently in development. Whereas current AARGMs are powered by the same rocket motor that has been used in the High Speed Anti-Radiation Missile (HARM) since the 1980s, the extended-range variant will boast a newly designed rocket motor and airframe.

Commerford said the plan is to have the extended-range AARGM integrate with the F/A-18E/F Super Hornet and EA-18G Growler. While the new missile will be able to fit inside the F-35C Lightning II’s internal weapons carriage, initially it will not be integrated with the fifth-generation jet’s software, he added.

“It’s an exciting time for the AARGM program, with development of an extended-range capability to refresh that airframe and make it a capable weapon for the foreseeable future,” Commerford said.

New decoys, weapons to give Naval Aviators upper hand

In an effort to counter enemy air defenses and reduce the number of weapons needed to penetrate them, the Navy has begun development on a new system of decoy jammers that can be fired in tandem with armed missiles.

In addition to drawing enemy fire away from actual weapons, the Miniature Air Launched Decoy (MALD-N) will also be equipped with jamming technology to further suppress enemy defenses, said Capt. John Dougherty, program manager for precision strike weapons.

“One of the problems all of our weapons have is that targets are very heavily defended these days with very sophisticated defense systems, and what that makes us do as operators is we’re not in a one shot-one kill mindset, so we have to put multiple weapons downrange so that we can saturate the enemy defenses and achieve the effects we’re looking for,” Dougherty said. “MALD-N going to help with this problem.”

MALD-N is scheduled for an early operational capability (EOC) on the F/A-18 in 2021, with IOC set for 2022.

Between programs like MALD-N and the Navy’s first two network-enabled weapons—the Joint Standoff Weapon (JSOW) C-1, which delivered last year, and Harpoon Block II+, which is scheduled for IOC on the F/A-18 in July—“it’s an extremely exciting time to be in the weapons business,” Dougherty said.

Dougherty was particularly pleased to discuss the outlook for the Long Range Anti-Ship Missile (LRASM), a new weapon set to reach EOC on the U.S. Air Force’s B-1 Lancer in September, and on the Super Hornet a year later.

“LRASM to me is by far the most exciting capability that we’re about to roll out to our fleet
aviators,” he said. “It allows our aviators both in the Navy and the Air Force sanctuary employment from long range against that high-end, capital-ship threat. It really is a change in the way we do business. It’s a new operational concept.”

Dougherty noted that, as a semi-autonomous weapon, LRASM can be taken downrange, employed and forgotten. Once a pilot fires LRASM, “they can turn around and go back home and enjoy sanctuary and safety from their ship,” he said.

Dougherty also touched on development of the Small Diameter Bomb (SDB) II, the Navy’s next-generation land-attack weapon. Expected to reach IOC on the F/A-18 in 2020 and the F-35B and C in 2022, SDB II will be able to pick up and seek moving land targets.

“So you can see there’s a lot of new stuff that we’re putting into the hands of our warfighters, and I really think it’s going to tip the scale in our favor and really make our adversaries think twice before they start to challenge the international norms and order that we’ve all enjoyed for many years,” Dougherty said.